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Abstract—Marine pollution such as litter and debris, both
beached and floating objects/liquids, are one of the most se-
rious and fast growing environmental threats to the oceans
and seafloors. The negative impacts of this pollution on the
environment and on human and marine life are unquestionable.
We propose a novel information-centric underwater Internet
of Things (UW-IoT), called LICOT, to sense and collect data
from different types of marine pollution in oceans or other vast
water bodies, to transform it to information, and to share it
with other nodes in the network using appropriate communica-
tion technologies in order to make timely decisions. Given the
sparsity of the nodes, the communication limitations, and the
complexity of building an underwater network, an infrastructure-
free architecture is formed upon request from a bottom-up
perspective, based on the situation and litter type. Considering
the repetition, similarity, or correlation between the portions of
detected pollution, the map of pollution is reconstructed after
information fusion is performed to restructure the top-down
network so as to increase the efficiency and agility of the IoT
network. Experiments were conducted in the Raritan River–New
Jersey in Summer’19 to evaluate the feasibility of this solution
by building a small testbed in the hope to offer an efficient tool
to protect the ecosystem when it scales up in the future.

I. GENERAL DESCRIPTION

Overview: While about three quarters of the Earth surface
consists of water, the rapid expansion of pollution in water
bodies has become a global crisis over the last few years.
Marine litter develops from various sources and causes a
wide range of environmental safety and health issues. The
slow degradation rate of marine litter items, combined with
the growing quantity of debris collection, is leading to ocean
pollution. When the debris, such as plastic, degrades over
time, it turns into micro- and then nano-plastics, which is
then consumed by fish and eventually by humans. According
to recent studies [1], around 640,000 tonnes of gear is lost
in the ocean annually. Lost nets create a huge threat to
marine life as they trap and kill at least 136,000 seals, sea
lions, and whales. According to the survey conducted by the
United Nations Educational, Scientific and Cultural Organiza-
tion (UNESCO) [2] over 80% of marine pollution comes from
land-based activities. From plastic bags to pesticides, most of
the waste produced on land eventually reaches the oceans.
Rivers carry the litter with their currents to the seas and are
one of the main sources of litter entering the seas. There is
litter spread widely throughout the seafloor, but its distribution
is usually patchy with densities from 1 up to around 200
items per each 10 m, as reported for the Messina Strait’s
channel—one of the geologically active areas of the Central
Mediterranean Sea [3].

Challenges: Underwater Internet of Things (UW IoT) [4]
is a novel class of IoTs in aqueous environments enabling
various practical applications such as oceanographic data
collection, pollution and environmental monitoring, tsunami
detection/disaster prevention, and tactical surveillance [5].
Heterogeneous nodes—including sensors, buoys, vehicles, and

Fig. 1: System model showing different types of pollution, including litter,
liquid, etc. The information extracted from the pollution is critical to form an
efficient IoT network of heterogeneous nodes, since continuous and reliable
communications is not available in our application as in conventional IoTs.

underwater objects and creatures—that constitute UW IoT
perform their regular dedicated tasks, while communicating
reliably with other nodes to coordinate data aggregation and
sharing [6]. While different aspects of the terrestrial IoT have
been discussed in the literature [6], [7], there is no solid and
commonly accepted definition of UW IoT, where the nodes
differ with respect to (i) the type of sensed data; (ii) the
area sensed; (iii) the source of energy for operation; and
(iv) the mode of data transmission in terms of energy or
communication cost, or both [8].

Our Contribution: We propose a novel underwater IoT,
called LICOT, specifically designed for marine pollution mon-
itoring. We investigate the feasibility of implementing an IoT
testbed that connects heterogeneous nodes in an information-
centric on-demand structure, given the fact that infrastruc-
ture is not provided in the oceans. Pollution information is
extracted and the IoT network is structured following both
a bottom-up and a top-down approach. Experiments were
conducted in the Raritan River–New Jersey to evaluate the
proposed method in Summer’19.

II. TECHNICAL SOLUTION AND PROJECT DETAILS

A novel information-centric IoT is proposed based on the
required sensing, processing, and decision tasks of different
classes of marine pollution. Fig. 1 shows the system model in
which multiple heterogeneous static and mobile nodes form
a network to detect different types of pollution. The network
is flexible regarding the type of pollution and the technology
that is appropriate for that scenario, as reflected in Table. I. We
propose four layers for LICOT including sensing, processing,
transmission/network, and perception/execution layers.
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TABLE I: Types of pollution and the preferred communications technology.

Type of pollu-
tion

On sur-
face

On
seabed

Dissolved
in
water

Static
or dy-
namic

Preferred
commu-
nication

Oil (Numbers/
Video/ Frames)

Yes Yes No Dynamic Wi-Fi

Plastic (Video/
Frames)

Yes Yes Yes Both Wi-Fi

Acid/Base Con-
centration (Num-
bers)

Yes No Yes Dynamic Wi-Fi or
Acoustic

Coral Reefs
(Video/ Frames)

No Yes No Static Wi-Fi or
Acoustic

Dead Zones
or Dissolved
Oxygen
(Numbers)

No Yes Yes Both Wi-Fi or
Acoustic

Conductivity
(Video/ Frames)

No No Yes Dynamic Wi-Fi or
Acoustic

Fig. 2: The proposed strategy for data collection and pollution monitoring in an
infrastructure-free underwater/surface/air media. The information is extracted
from the pollution data (collected by the sensors), and the IoT is formed from
bottom to top on-demand. Network restructuring might be required to unify
the information in order to efficiently monitor the area of study.

An Information-centric Approach: As shown in Fig. 2,
the network is initiated on-demand, when a node detects
the pollution in the sensing layer. Since (i) the continuous
connectivity (as usually needed in conventional IoTs) is not
available in our application due to the limited communications
and energy resources underwater and (ii) a-priori information
on the required resources is not known due to different types
of pollution that might be detected, deployment of an UW IoT
requires a dynamic network in which the nodes only exchange
selected information instead of the raw data. Two types of
structure formations are suggested as following.

Bottom-up Approach: Since nodes in the sensing layer are
sparse compared to the large water bodies we monitor, it is
not feasible to have a pre-defined infrastructure, unlike the
conventional IoTs. Instead, upon request, we form a dynamic
structure starting from the bottom, in the sensing layer, where
the node collects the data in the field. After local processing,
if a sign of pollution is detected, the IoT network formation
is initiated in a self-organized manner. We call this process
the bottom-up approach since this framework merges the
partial information/observations collected/locally-processed by
each node to have a comprehensive understanding in the
server. Since the resources and communication bandwidth
are limited, the connectivity is not continuous and only the
valuable information (processed data) will be transmitted in
the network.

Top-down Approach: Given the framework we have al-

Fig. 3: Impact of pollution type on the network topology and the com-
munications method. In-network coordination, single hop and multi-hop
topologies are shown in the figure given the information extracted from the
pollution. The extracted information from the pollution based on the metrics
including independence, repetition, similarity, or correlation, will impact the
communications/topology in LICOT as shown in the figure.

ready formed based on the fusion of local bottom-up networks,
and considering the locations/types of pollution, we need
to restructure the framework from top to down, in which
we integrate the locally observed information in a unified
framework, considering the potential repetition, similarity, and
correlation among the collected information. Furthermore, if
a network is unable to provide the required communication
resources to share the information, this top-down approach
handles the problem in the most efficient manner by allocating
more nodes to the area of interest. Such top-down approach
allows for a highly scalable solution. If an increase in the
level of information in the perception layer is required, the
topology changes accordingly using the nodes/sensors in the
sensor layer without any change in the main framework.
The processing layer depends on micro-controllers/embedded
processors that a sensor is connected, which makes this system
highly scalable as well.

Impact of Pollution Type on Communication: Different
communication techniques should be utilized according to
the type/size of pollution, distribution of pollution, rate of
temporal and spatial changes of pollution in the area of study.
For instance, to measure a chemical parameter, such as pH
or Dissolved Oxygen (DO), a small data packet is sufficient;
whereas to describe the physical shape of an object, an image
or multiple images from different angles should be transmitted,
which leads to different communications solutions. If a patch
of objects are detected, multiple nodes should cooperate from
different angles to be able to extract the map of pollution,
which leads to a different IoT topology compared to the case
when a single object is detected. A schematic is shown in
Fig. 3 in which different types of pollution are assumed in the
region of interest.

III. SOCIAL IMPACT ON HUMANITY/LOCAL COMMUNITY

The Raritan River is a major river of central New Jersey
and is a unique laboratory available to Rutgers, i.e., a perfect
case study. It is also the New Jersey’s largest contiguous
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wildlife corridor offering refuge to numerous threatened and
endangered species [9]. This river has experienced pollution
from industrial facilities toxic dumping for over 100 years. The
watershed is also impacted by contaminated sites and sewage
treatment systems. Pollution from contaminated sites leaks
into the river and harms the environment and public health.
According to the Environmental Protection Agency (EPA)
reports [10], over 16 noxious chemicals and solids were found
infecting the section of the Raritan River that borders New
Brunswick, NJ. Three of those chemicals—arsenic, benzopy-
rene, and the pesticide heptachlor epoxide—have the potential
to adversely affect the drinking water supply. Fig. 4 shows the
map of contaminated areas in the Raritan River watershed [9],
and identifies contaminated sites in the basin and along the
river. The watersheds should be monitored regularly to provide
usable data about water quality and the overall health of the
Raritan watersheds. The Raritan Headwaters Association [11]
holds a specific stream monitoring program; based on visual
assessment and on manual collection of water samples at each
site, they can classify coarsely the sites as “excellent”, “good”,
“fair”, or “poor”. Our project will enable streamlined and
improved monitoring of such an important area.

IV. IMPLEMENTATION STATUS/ EXPERIMENTAL RESULTS

Testbed Setup: The system mainly consists of underwa-
ter/surface vehicles, static buoys/nodes, drones, and any on-
shore computers or smart devices. For these experiments,
the BlueROV2 underwater vehicles developed by BlueR-
obotics [12] have been used to collect and process data
from the Raritan River. These devices will predominantly
be connected through wireless comms standards such as Wi-
Fi, acoustic communications (using hydrophones), or cellular
network. The underwater vehicles are also capable of wired
connection if and when it is required. To detect different
types of pollution, the underwater vehicles are equipped with
a 1080p camera and a number of sensors in the sensing
layer (connected to a Raspberry Pi processor through a se-
rial connection) including a temperature, dissolved oxygen,
pH, conductivity, and pressure sensor. The vehicle also has
a Global Positioning System (GPS) module attached to its
Pixhawk controller board, which can only be used when the
vehicle is on surface or close to surface. Surface vehicles
can communicate to each other when connected to the router,
nearby node or hydrophone. Using these vehicles, we can
practically go to any specific location and conduct thorough
testing in that area such as to label any type of pollution
in that area depending on its seriousness. Fig. 5(a) shows
the developed underwater vehicle equipped with the acoustic
modems. Fig. 5(b) presents the setup for the experimental
analysis in the Raritan River including the underwater vehicle
and a drone in the air.

Experimental Results: The processing layer consists of
processing the data we receive and finding trends or interesting
results from this data, which we call information. This layer
employs the camera and various sensors discussed in the
testbed section. For example, from a camera we can use
computer-vision algorithms to process the frames of a video
feed and detect trash floating on the surface of the water of
interest to us. Another example involves finding areas of low
habitation in the water using an oxygen sensor. We would
have to process the data to notice that there exists some areas
with low oxygen levels that we can explore further to figure
out what the cause is. Another way to detect pollution can be
through the conductivity sensor. Since it changes with more
salt and/or dissolved impurities, a spike or sudden drop in

Fig. 4: Contamination in the Raritan River (2016) [9].

(a) (b)

Fig. 5: (a) BlueROV2 vehicle equipped with an acoustic transducer; (b) Net-
work of connected devices in an experiment conducted in the Raritan River,
New Jersey. The surface vehicle is moved in certain direction with the help
of drone to detect the floating objects/waste.

conductivity can signal more dissolved pollutants in the area.
Conductivity data can then be combined with temperature—
as shown in Fig. 6(a)—and dissolved oxygen data to warn
the user about possible dead zones or low habitation areas.
In the United States, the conductivity in freshwater normally
ranges from 150 to 1500 µS/cm for a healthy aquatic life,
but it can go down after heavy rain falls. As seen in Fig. 6(b),
the conductivity of the Raritan River stays relatively constant
in the range of 125–130 µS/cm, which is slightly lower than
150 µS/cm mentioned before. This is because of the heavy
rain the day before the experiments combined with other dis-
solved pollutants. The cameras equipped inside the underwater
vehicle and the drone are used for the object feature detection
in order to identify the marine waste. When trying to detect
the objects either floating on surface or underwater, the key-
points are extracted and they are used to identify the object.
Fig. 7 shows how a plastic bottle underwater and a floating ball
on surface are being detected. The vehicle also monitors any
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(a) (b)
Fig. 6: (a) Temperature (◦C) heatmap in an experiment conducted in the
Raritan River, NJ, USA on August 23, 2019; (b) Conductivity (µS/cm)
recording in the Raritan River, NJ, USA on August 23, 2019.

(a) (b)

Fig. 7: (a) Underwater object detection results in the Raritan River, New
Jersey; (b) Detecting objects on the surface of the Raritan using drone video.

abrupt changes in the environmental data such as temperature,
pressure, and oxygen levels to build some context for decision
making. For example, in Fig. 8, it is seen that the location with
maximum and minimum temperatures have been marked.

The transmission layer enables communication between
our various devices. We mainly communicate through Wi-Fi,
acoustic transmission, or wired connections. By default, we
will fall back to wired networking if possible since this is the
most reliable and fast form of networking for our systems.
Otherwise, if we are underwater, we will default to acoustic
networking. We can get the depth of the vehicle from the built-
in depth sensor and use that to see if we are underwater or on
surface to prioritize the best communication method.

For the perception layer, we choose to display specific data
to the user based on what data we receive and aggregate. This
data can be stored in a database and the user can retrieve
it through a web client. Once the data is processed and
transmitted, we can aggregate it and store it into a database that
can be accessible to the public through a simple API. We can
also see the data being collected in real time through the use
of a Graphical User Interface (GUI) application (see Fig. 8).
Through the GUI, we can monitor the data being collected by
different vehicles while visualizing the data on the map. We
can also see the pollution that was detected by all of the active
devices.

Feasibility and Scalability: Our proposed architecture is
highly scalable. Since most processing is done locally on the
node, we can add many more nodes to our UW IoT. As long
as the devices have the capability to send data to another node,
we can include those devices in our IoT network. Since we
treat communication as a costly action, we try to limit the
size of data we send but increase the information, which also
increases the scalability of the proposed architecture.

V. CONCLUSION AND FUTURE WORK

There is major pollution crisis in the water bodies, especially
oceans, and majority of the pollution is carried there by rivers.
Our solution is a novel information-centric underwater Internet
of Things (UW-IoT), called LICOT, which monitors different

Fig. 8: The designed Graphical User Interface (GUI) for LICOT to create the
map of pollution and to show irregular changes in the parameters that we
control. The top figure shows the active nodes. The bottom figure shows an
irregular change in the recorded temperature in the testing area in the Raritan
River, NJ, on August 23, 2019.

types of pollution in rivers by utilizing an underwater IoT
based on the information collected from the pollution. This
solution will allow for better and more timely monitoring
of pollution compared to conventional methods, which will
lead to a better understanding of pollution. Experiments were
conducted in the Raritan River–New Jersey in Summer’19 by
building a small testbed in the hope to offer an efficient tool
to protect the ecosystem when it scales up in the future.
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